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Abstract 

Among all of the measured signals in polysomnography, 
ECG signal acquisition is one of the easiest to measure. 
We hypothesize that the signal quality (SQ) will be 
significantly different among sleep stages (awake, light, 
deep sleep, and REM). To check the hypothesis, the Sleep 
Heart Health Study visit 1 (SHHS1) dataset was used 
(6,441subjects) in this study. In this database, 4082 
subjects had at least more than 5 consecutive minutes for 
each stage. As SQ assessment (SQA) features, we used the 
kurtosis, the skewness, the Shannon entropy, and the 
standard deviation of the signal after high-pass filtering 
using a cut-off frequency of 40 Hz. For each of the stages 
with a duration of more than 5 minutes, the features were 
estimated in epochs of 30 s using a sliding window with 
increments of 1 s from the start of the stage to its end. The 
prediction power of each feature between pairs of sleep 
stages was assessed using the area under the ROC curve 
(AUC). The observations showed that kurtosis provided on 
average, higher AUC than the other features. In a 
conclusion, ECG SQA features may help to improve the 
classification of sleep stages in automatic classification 
systems. 
 

 
1. Introduction 

Sleep is a necessary part of human existence; during 
sleeping, the body can clear debris and waste from the 
lymphatic system, which boosts the immune system [1]. 
Moreover, many vital sleeping processes such as protein 
synthesis, tissue growth, hormone release, and muscle, 
mostly happen in the deep sleep stage. The earliest study 
of the various stages of sleep was provided by Loomis et 
al. [2]. According to the National Heart, Lung, and Blood 
Institute, people with sleep deficiency have a greater risk 
of many health complications, such as heart disease, 
kidney disease, diabetes, stroke, high blood pressure, and 
obesity [3]. Accordingly, accurate classification of sleep 
stages can be useful for the evaluation of sleep quality. In 

sleep stage analysis, records are divided into 30 seconds 
pieces. Each divided piece is called an epoch. Each epoch 
is tagged as, awake (stage 0), light sleep (stages 1-2), deep 
sleep (stages 3-4), and rapid eye movement (REM) sleep 
(stage 5). In light sleep, the level of awareness becomes 
lower than in the awake state, the body temperature drops, 
eye movements stop, and the breathing and HR become 
more regular. In deep sleep the muscles are completely 
relaxed, the blood pressure drops, and breathing slows 
down. Deep sleep is the most essential stage of sleep, since 
replacing cells, building muscle tissue, and healing wounds 
are happening in this stage. In REM sleep, the brain lights 
up with activity, the body is relaxed and immobilized, the 
breathing becomes faster and irregular, the eyes move 
rapidly and the dreaming process develops. 

The gold standard in terms of sleep analysis is overnight 
polysomnography (PSG) which refers to a systematic 
process employed to collect physiological signals during 
sleep [4]. PSG is presented by the recording of several 
physiological variables during sleep such as 
electroencephalogram (EEG), electrooculogram (EOG), 
electromyogram (EMG), electrocardiogram (ECG), 
respiratory effort, airflow, saturation of oxygen, and 
thoracic and abdominal effort [5]. The EEG signal is the 
most important signal for sleep stages classification. 
Nevertheless, out of the lab signal recording, and analysis 
of EEG signal presents us with some technical challenges 
[6]. On the other hand, ECG can be more easily acquired 
during home sleep monitoring. Electrocardiographic 
signals (ECG) can be processed to identify periodically 
occurring disturbances in the heart rhythm. As the most 
prominent peak in ECG signal is the R wave, RR intervals 
contain essential information regarding physiological 
regulation. It has been claimed that cyclic variations in RR 
intervals are associated with sleep apnea and sleep stages. 
Nevertheless, in this work, we focus on the unobtrusive 
approach to look for physiological correlates of sleep 
stages using the quantifiers of the quality of the raw ECG 
signals. One of the main challenges of ECG analysis in 
unobtrusive monitoring, such as signal recording in 
wearables, is that these signals are suffering from different 
kinds of noise and artifacts. Hence, automatic assessment 
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of the quality of ECG signals is increasingly demanded in 
reducing false alarms due to the presence of unacceptable 
levels of noise [7].  Here the hypothesis is that the deeper 
the level of sleep the lower the movements are, hence the 
quality of the recorded ECG would be higher. 
Accordingly, the quality of the ECG signal can be 
considered as a feature to classify sleep stages.  

 
2. Method 

In this section, the methodology which is applied to 
study the dependence of some ECG SQA indices with 
sleep stages is explained. To understand the main idea, the 
block diagram of processing steps is presented in Figure 1. 
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Figure 1. The block diagram of sleep study by using SQA. 
 
 
2.1. Database 

The Sleep Heart Health Study visit 1 (SHHS1) dataset 
was utilized in this work [8],[9]. The Sleep Heart Health 
Study (SHHS) is a multi-center cohort study implemented 
by the National Heart Lung & Blood Institute to determine 
the cardiovascular and other consequences of sleep-
disordered breathing. In all, 6,441 men and women aged 
40 years and older were enrolled between November 1, 
1995, and January 31, 1998, to take part in SHHS Visit 1.  
In our study, 4082 subjects from SHHS1 with more than 5 
consecutive minutes for each stage were selected. Also, 
here the light sleep labeled as stage 1 was not analyzed 
since it is quite similar to the awake stage so for light sleep 
only stage 2 was considered. Deep sleep was treated by 
pooling stage 3 and stage 4. Subjects with more than 5 
minutes of recording in each stage of awake (stage 0), light 
sleep (stage 2), deep sleep (stage 3 or 4), and REM sleep 
(stage 5) were identified and included in this study. The 
ECG signal in this database was sampled at 125 Hz. 
 
 

 

2.2. Signal Quality (SQ) indices in ECG  

    Since the ECG signal has low frequency and 
amplitude, it is vulnerable to noise. Therefore, the first step 
for an accurate ECG analysis is to carry out signal filtering. 
In these terms, the ECG signal is corrupted by two major 
noises generated by biological (such as base-line drift, 
motion artifacts, muscle contraction, EMG interface, etc.) 
and environmental resources (such as power-line 
interference, instrumentation noise generated by electrical 
devices, etc.). Electrocardiogram signal quality assessment 
(SQA) plays a critical role in improving the diagnostic 
accuracy and reliability of ECG signals. This work uses SQ 
indices kurtosis, Shannon entropy, and skewness. All those 
indices are frequently used [10],[11]. Moreover, an 
additional SQA assessment is employed: the standard 
deviation of the ECG after high-pass filtering as a 
surrogate measure of the EMG that accompanies the ECG 
signal. Next, we briefly introduce the different SQA 
measures, 

 
Kurtosis 
 
Kurtosis is a measure of the "tailedness" of the 

probability distribution. The standard measure of a 
distribution's kurtosis is a scaled version of the fourth 
moment of the distribution. When this parameter is biased 
is estimated as, 
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Before kurtosis estimation, the ECG has been filtered 
using a second-order band-pass filter with a cut-off 
frequency between 15 to 30 Hz to enhance the QRS 
complex. 

 
Skewness 
 
Skewness is a measure of the asymmetry of the 

probability distribution of a real-valued random variable 
about its mean. The standard measure of a distribution's 
skewness is a scaled version of the third moment of the 
distribution. When the skewness is biased, it is estimated 
as, 
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Before skewness estimation, the ECG signal was 
filtered using the same filter that was employed for the 
kurtosis. 
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Shannon Entropy 
 
The Shannon entropy measures the average level of 

information (bins) provided by a random process. Given a 
discrete random variable X, with possible outcomes

1,..., nx x , which occur with probability 1( ),..., ( )nP x P x  the 
entropy of X is defined as,  
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In this work, this parameter is calculated from the 
empirical probability distribution by selecting the number 
of bins equal to the square root of the number of points in 
the X variables.  

Prior to estimation, the ECG signal has been filtered 
using the same band-pass filter that has been employed for 
kurtosis and skewness estimation. 

 
EMG noise level 
 
EMG is a signal with a wideband content, high above 

the bandwidth of the ECG. Hence, a surrogate of the EMG 
level can be obtained by high-pass filtering the signal using 
a cut-off frequency high enough to reduce most of the ECG 
wave contents. Therefore, the standard deviation of the 
signal after high-pass filtering can be used as an index of 
EMG level and as an additional SQA index. Here, a cut-
off frequency of 40 Hz was selected. After this, the 
standard deviation of the filtered ECG has been employed 
as an additional SQA index. 

 
2.3. Data processing   

To process the SHHS1 database, MATLAB ® version 
2022a had been used to analyze a total of 4082 subjects. 
ECG segments that correspond to sleep stages 0, 2, 3, 4, or 
5 that were longer than 5 minutes were included in the 
analysis. SQA indices were calculated using epochs of 30 
s and updated by sliding the epoch in increments of 1 s 
from the start of the stage to its end.  After obtaining the 
ECG SQA parameters, the median and interquartile were 
computed for each sleep stage. Moreover, pairwise 
comparisons between sleep stages were used for each SQA 
index to assess the classificatory power as measured using 
the area under the ROC curve (AUC).  

 
3. Results 

The results of the study are presented in the tables. Table 
1 shows the median ± interquartile range values for the 
pooling of all the 4082 subject’s SQA indices disclosed for 
each sleep stage. In Table 2 we can see the results of the 
median ± interquartile range of the AUC for SQA 
parameters when comparing one stage of sleep to the other.  

 

4. Discussion and conclusion 

In this study, 4082 subjects with more than 5 
consecutive minutes for each stage of sleep (awake, light 
sleep, deep sleep, and REM sleep) from the SHHS1 
database were analyzed. The SQA indices such as kurtosis, 
skewness, Shannon entropy, and one more proposed index, 
the standard deviation of the high-pass filtered ECG signal 
for each stage were obtained. 

As reflected in Table 1, the median of kurtosis and the 
absolute value of skewness in the awake stage have the 
lowest value since the asymmetry of HRV distribution can 
be affected by the movement of the subject during this 
stage. However, the absolute value of skewness for the 
different sleep stages is quite similar. Shannon entropy has 
the highest value in the awake stage because the 
predictability is lower than in sleeping conditions due to 
the presence of a large amount of noise. The standard 
deviation of the high-pass filtered ECG (µV) has the 
highest value in the awake stage because the chances to 
find a high noise level are higher than sleeping due to 
motion artifacts and muscle activities. However, because 
these results are obtained by pooling the observations of 
each stage for all of the subjects, the intrasubject change of 
the indices may be blurred. 
According to the result of Table 2, the kurtosis while the 
subject is awake compared with the light sleep showed the 
best performance of classification. However, the light 
sleep vs REM sleep showed poor classification efficiency 
when using SQA parameters such as the skewness, the 
Shannon entropy, and the standard deviation of the high-
pass filtered ECG signal. Since the AUC value for all of 
these parameters is higher than 50%, it means that they 
have useful information for the classification of sleep 
stages. Consequently, and from the obtained results, 
kurtosis has the highest AUC values when comparing 
different stages of sleep while the skewness had the lowest 
values compared to the other SQA indices. These results 
are in accordance with previous studies.  Sanchez del Rio 
et al. [2] assessed eleven different methods for the 
estimation of ECG signal quality. According to their result, 
the kurtosis parameter gave the best performance overall 
in the test. It gave a high correlation with the signal SNR 
(0.95±0.00) and a high correlation with the output of a beat 
detector (Positive Predictively=0.97±0.00) and high 
resolution in time (10 seconds of signal length). Moreover, 
Zhao et al. [11] proved that kurtosis can be used as an 
efficient SQA index in ECG quality analysis. 
Consequently, the SQA indices which are calculated here 
can be used to help to classify awake and sleep stages. 
However, more studies should be carried out to accurately 
categorize the different sleep stages. Therefore, for further 
studies, the result of SQA parameters can be applied to 
more sophisticated algorithms such as Machine Learning 
(ML) in automatic systems.  
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Table 1. The median ± interquartile range SQA indices. 
 

 Kurtosis Skewness Shannon Entropy 
The standard 

deviation of the HP 
filtered ECG(µV) 

Awake 14.70 ± 1.68 -0.19 ± 0.05 2.97 ± 0.31 4.0 ± 2.6 
Light sleep 16.48 ± 0.87 -0.21 ± 0.07 2.72 ± 0.14 2.8 ± 1.0 
Deep sleep 15.88 ± 0.79 -0.20 ± 0.05 2.75 ± 0.13 2.7 ± 0.6 
REM sleep 16.01 ± 0.86 -0.20 ± 0.06 2.76 ± 0.14 2.8 ± 0.9 

 
Table 2. Median ± interquartile range AUC (%) for SQA indices. 
 

 Awake vs 
light sleep 

Awake vs deep 
sleep 

Awake vs REM 
sleep 

Light vs REM 
sleep 

Light vs 
deep sleep 

Deep vs 
REM sleep 

Kurtosis 86 ± 21 80 ± 26 77 ± 25 67 ± 19 71 ± 21 71 ± 25 
Skewness 70 ± 22 75 ± 26 72 ± 24 63 ± 16 66 ± 19 70 ± 24 
Shannon 
Entropy 79 ± 22 78 ± 25 76 ± 24 63 ± 16 65 ± 18 69 ± 22 

The standard 
deviation of 

the HP-
filtered ECG 

82 ± 24 83 ± 26 84±25 62±15 66±20 70 ± 24 
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